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Abstract

We examine the Hessian matrix of the potential encrgy under internal coordinates.
We report all Christoffel symbols which exist for molecules if we use the known
coordinates such as bond distances, bond angles, torsion angles, and out-of-plane angles.
We use as an example triatomic HCN in an extended geometry.

1. Introduction

Reaction coordinates, or considerations of molecule trajectories in a chemical
rearrangement, arc based on the assumption that the potential energy V is a function
of the relative position of the nuclei. Thus, an important theoretical tool is the
computation of the potential energy surface (PES), or of some lower-dimensional
sections of it, where the atomic nuclei move and we observe the change in their
potential energy if we trace a corresponding trajectory on the PES. In general, variations
of bond lengths, valence angles and dihedral angles within the molecule represent a
convenient set of coordinates. A suitable definition of a continuous line in these
coordinates representing a "rcaction coordinate" (whatever this means), has stood in
the center of the scientific debate for many years (cf. [1]). It seems necessary 10 use
fundamental ideas of differential geometry to reach a definition which is independent
of the choice of coordinate system. In the case of the intrinsic reaction coordinate
(IRC) [2], a path function g = ¢(z) traces a path in configuration space, which is the
steepest descent path on the PES, connecting a saddle point with a minimum of the
PES. We obtain an independent definition of an IRC by use of the contravariant
metric coefficients g*/ of the curvilinear coordinates ¢*, in comparison with the Cartesian
5%, by using a simple gradient system of ordinary differential equations for the path
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dq'/dt = —g¥(av/aq’), (D

where g = BM™'BT. (The sum goes over j from 1 to n in the Einstein sum convention.)
B is the Wilson B matrix and M is the diagonal mass matrix. Unfortunately, the
simple gradient ansatz of a steepest descent [3—5] is usable only as a global concept;
it is not usable as a local criterion for a path on the PES. If we are interested in a
local property, such as a valley floor characterization at any point on a so-called
minimum energy path (cf. [6]), then we have to use second derivatives of the PES,
which comprise the Hessian matrix [7—11]. We trace a path on which the eigenvector
of the Hessian and the gradient vector are parallel, using the ansatz of a gradient
extremal. To be independent of a coordinate system necessitates that in the derivation
of the Hessian we use the covariant vector (dV/dq'). In a curvilinear coordinator
system (¢'),_, . this results in (cf. [8])

Hi = V. g = V1339’ - T5(3V 134", @

where the Christoffel symbols of second kind Ti’j emerge, which depend directly on
the metric coefficients

T = 5 ¢"(3g 13q' +3gi 19q’ - 3gi; 134). 3)

At a nonequilibrium point of the PES, we can compute generalized normal
vibrations of the molecule [12,13] by diagonalizing the Hessian matrix as defined in
eq. (2). We obtain a matrix of force constants. Nota bene, the matrix (9*V/9¢'dq’),
which gives the "basic force constants”, is not a tensor [14]; it depends on the choice
of coordinate system. The generalized normal vibrations may be used in an extension
of the so-called reaction path Hamiltonian [15,16] in curvilinear coordinates.

In a more dynamic way, if we treat classical equations of motion of the atomic
nuclei in the molecule, then we have to use the Lagrange ansatz in the mass weighted
form of eq. (1) (cf. [17,18)),

~d%q* /di* = T (g 1dr) (dg’ /dn) + g4 9V 13¢"). 4)

Thus, we have to deal with the Christoffel symbols as well. In eq. (4) we observe,
in the case of constant energy V, the condition for an unperturbed kinematically
possible motion of the system point, because the term on the r.h.s. becomes zero. The
trajectory becomes a geodesic curve of least curvature due to the fact that eq. (4) is
cast in the form

~d*q*/de* = T} (dg'/dr) (dg1dD) (5)

(cf. [19]; this reference deals with such problems in a reaction problem).
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The apparent complication which cmerges with the sum of the Christoffel
symbols serves as a corrigendum against the influence of the curvilinear coordinate
system which, in reality, should not have an influence on the motion. We can imagine
a small person with a hammer riding on the curve ¢(t) and, as the curve tries to pop
out of its straight path, he or she continuously pounds it back in because of the
fundamental law: every free system persists in its state of rest or uniform motion in
a straight path.

All that is necessary now is to evaluate an algorithm to compute the I’i’l‘. in those
coordinate systems which are generally used for small and medium-sized molecules.

2. Analytical computation of Christoffel symbols of second kind

The Christoffel symbols of sccond kind, eq. (3), are computed by
T == 2 £i(39'/0x")(3%q* /3x"9x") (3¢ 19x™)gy 6)
v w

where ¢ denote the internal and x° the Cartesian coordinates of the molecule. g;; are
the elements of the covariant metric tensor given by

8= (3¢ /3x7)(3q’ 19x7). N

The task is the analytical computation of the first and second derivations of the
internal coordinates with respect to Cartesian ones. The internal coordinates are
divided into bond length, bond angle, torsion angle and out-of-plane angle.

A procedure is well known {20] which realizes the task in a non-analytical
ansatz, using the expansion of curvilinear coordinates and potential energy. We note
that we are interested also in points far away from equilibrium geometries; this is a
step beyond ref. [20].

The computation of the derivations has been carried out according to the
following algorithm. Firstly, derivations are computed in dependence on Cartesian
coordinates by use of the formula manipulation package REDUCE [21]. Secondly,
the Cartesian coordinates arc substituted by internal coordinates which lie in a selected
position in space.

The particular space position x of every one of the atoms which define an
internal coordinate is also represented independently of internal coordinates given by

x=T'(x + v). (8)

Matrix T is the result of the multiplication of the matrices of rotation D_, Dy and D .
The elements of the matrix T are given by
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T,, = cos(o) cos(f), ®
T,, = sin(a) cos(y) + cos(e) sin(B) sin(y), (10)
T,, = sin(e) sin(y) — cos() sin(B) cos(y), (11)
T, = —sin(¢) cos(f), (12)
T,,= cos(a) cos(y) — sin(a) sin(f) sin(y), (13)
T,, = cos(a) sin(y) + sin(a) sin(f) cos(y), (14)
T,, = sin(f), (15)
T,, = —cos(f) sin(y), (16)
T,, = cos() cos(y). (17

Angles ¢, B, and yare defined in the appendix. Vector v is the vector of translation
of the atoms which define an internal coordinate. v is given by

oT = (=x3b-2 _ x3-1 _ 53y, (18)

and b is the number of an atom. For torsion angle &(r r.,r,r), for example, the
following terms result:

4% = 1, cos(o), (19)
47! = 1,y sin(g)cos(9), (20)
X% =1 sin()sin(d), @21)
=y, (22)
¥ ~rpaCOS(8), (23)
x4 = pusin(d), (24)
}—3bv2=}—3b—l =;3b=;3c~1 _—_;3C—_—;3d=0_ (25)
The angles ¢ and & are given by
o= arccos ((ra—ry)(re —ry)/(ras 7)) » (26)
8= arccos ((ro = ry) (ra=rp)/(tocrva)) (27)

where r  =|r, -rl
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Matrix T transforms from a particular space position into an arbitrary
one.
For all internal coordinates ¢, the first derivations in eq. (6) are given by

3q'/3x" = 2 T, , EJypeofd (28)

and the second ones are given by

9%q'/9x"9x" = 2 Z Toy rTuu s RYPSONY, (29)
r=1 =
where

=3[(v - 1)/3], u=3[(w-1)/3], (30)

and the angular bracket [z] means the entire part of number z. Vector E and matrix
F are given by

Elvpe of ¢ _ aqi/azv (31)
FiyPe ot = 324! 1ox" o™ (32)

All elements of vector E and matrix F different from zero are summarized in the
appendix for all types of internal coordinates, as well as the formulas for the computation
of the angles «, B, and . If the reader would like to use the given expressions for
dynamical treatments, this can be done by a simple mass-weighting extension
of eq. (6).

T4 = —2u(3q'13x")m"™ (3%q" /9x*3x")m"* (3¢ 13x™)g,; - (33)

“ is the inverse mass matrix g, and g,;» see eq. (1). Instructive examples are given
in ref [22] in the case of tri- and tetra- atomxc molecules. We have a program for the
compilation of the Christoffel symbols of second kind, on diskette written in
FORTRAN 77, which is available on request.

3. Example

There are 4 internal coordinates and 64 Christoffel symbols of second kind for
the molecule HCN [6]. The internal coordinates are defined by

1

- 2 3
q = rCH’ q

=7 4= K

ent 4T Myene 4 HCN?

where a point of the dissociation path to H+CN with maximal value of the gradient
is [23]:
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Yoy = 170.0 pm, ren = 1160 pm, 1, =7 Kqjen = T
This point is extended from the equilibrium geometry. Only 12 Christoffel symbols
of second kind are different from zero, and are given by:

=0 =0Y =T{, = 2.209436 nm™!,

i =0h =Ty = Iy = 5.382723 nm™,
Iy = Iy = —23.983335 pm rad ™!,

T = T} = —45.224948 pm rad™2.

Appendix

Bond length r

r(ra’ rb)= rab
up =yr—yb, v, =x*—xb

sin(a) = sin(arctan(ul/z}l)) v, <0

sin(ax) =1 u, <0, v, =0

sin(a) =0 u, =0, v, =0

sin(a) = -1 u; > 0, v, =0

sin(a) = —sin(arctan(u,/v,)) v, >0

cos(a) = —cos(arctan(u,/v,)) v, <0

cos(a) =0 u, # 0, v, =0

cos(a) = 1 u, =0, v, =0

cos(a) = cos(arctan(u,/v,)) v, >0
Uy = 2% — 2%, v, = cos(a) (x* — xb) - sin(@)(y - y?)

sin(f) = sin(arctan(u,/v,)) v, >0

sin(ff) = -1 u, <0, v, =0

sin(ff) =1 iy > 0, v, =0

cos(B) = cos(arctan (1451v,)) vy >0

cos(f) =0 v, =0

sin(y) =0

cos(y)y =1

By =1

Ey_, = -1

Fa 300 = VUr

Fa y3p-q=~1r

F3a3a = l/r
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Fipqp = -1r
Fayy 135y = 1Ur
Faypap =1r

First linear bond angle n

n(r,, r,r.) = arccos((r, - r,) (r, = r)/(r,, 1,.), N=7
u, =y -yt v, =x-x

sin(a) = -sin(arctan(u,/v,)) v, <0

sinfa) = -1 u, <0, v, =0

sin(a) =0 u, =0, v, =0

sin(e) =1 u, >0, v, =0

sin(a) = sin(arctan(u,/v,)) v, >0

cos(a) = cos(arctan(u,/v,)) v, <0

cos(a) =0 u, #0, v, =0

cos(a) =1 u, =0, v, =0

cos(a) = —cos(arctan(u,/v,)) v, >0
' U, = z° — 2%, v, = cos(o) (x° - x*) — sin(0) (y¢ - y*)

sin(f) = sin(arctan(u,/v,)) v, <0

sin(ff) =1 u, <0, v, =0

sin(ff) = -1 u, > 0, v, =0

cos(f) = cos(arctan(u,/v,)) v, <0

cos(f) =0 v, =0

sin(y) =0

cos(y)y =1

Eyoy = -1,

Ey v = + 1, ) 1)

Eye v =-1n,

Fiu 9301 = 1%

Fyaasp_1 = ~1r

Fay 13p_2=—1rk

Fyy_g3p1 = (g = 122, 13.)
Fayy_23..1 = Ui,

Fay 1309 = Urf,

F3c—23c—1 = _l/rl%c

Second linear bond angle x

k(r,, r,,r) = arccos((r, —r,) (r. = r)(r,r.)), K=7
U =y -yt v, =x - xb
sin(a) = —sin(arctan(u,/v,)) v, <0
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sin{fa) = -1 u, <0, v, =0

sin(fx) =0 u, =0, v, =0

sinfa) =1 u; >0, v, =0

sin() = sin(arctan(u,/v,)) v, >0

cos(a) = cos(arctan(u,/v,)) v, <0

cos(a) = 0 u, 0, v, =0

cos(a) =1 u, = 0, v, =0

cos(o) = —cos(arctan(u,/v,)) v, >0
u, = z¢ — zb, v, = cos(@) (x* — x*) — sin(o) (y¢ — y*)

sin(f8) = sin(arctan(u,/v,)) vy, <0

sin(ff) =1 u, < 0, v, =0

sin(f) = -1 u, > 0, v, =0

cos(f) = cos/arctan(u,/v,)) v, <0

cos(f) =0 v, =0

sin(y) =0

cos(y) =1

E3a = - 1/rab

Eyy = (g + 1, My Ty

E3c = - 1/rbc

Fii23a= U'fb

Fiy g =~ 11k,

e

Fay 235 = (rg. = 1212 12)
Fay_gac = 1Urg,

Fyye_o = 1,

F3¢—23c = —l/rl%c

Bond angle ¢

o(r,, r,, r.) = arccos((r, ~ r,)(r,— r)(r,r,.)N, 0<o<m
U, =y —yb, v =x—xb

sin(a) = —sin(arctan(u,/v,)) v, <0
sin(e) = -1 u, <0, v, =0
sin(a) =0 u, =0, v, =0
sin(er) =1 u, >0, v, =0
sin(a) = sin(arctan(u,/v,)) v, >0
cos(a) = cos(arctan(u,/v,)) v, <0
cos(a) =0 u, =0, v, =0
cos(a) =1 u; =0, v, =0

cos(a) = —cos(arctan(u,/v,)) v, >0
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uy = 2¢ — 2%, v, = cos(@) (x* — x*) — sin(a) (y¢ ~ y?)

sin(f) = sin(arctan(u,/v,))

sin(B) =1 u, <0,
sin(B) = -1 i, > 0,
cos(ff) = cos(arctan(u,(v,))

cos(f) =0

uy = cos(P) (22 — %) — sin(P) (cos(e) (x* — xb) ~ sin(a) (y@ — yb))

vy = sin(a) (x* — x%) + cos(a) (y? — yb)
sin(y) = sin(arctan(u,/v,))
sin(y) = —sin(arctan(u,/v,))
cos(y) = —cos(arctan(i;/v,))
= cos(arctan(u,/v,))
-2 = SiN(Q)r,,
3a-1 = cos(@)ir,
b2 = —Sin(@)r,
bo1 = (g = Ty COS(Q/(ry, 1,0)
co1 = 1/,
la-23a-2 = 28in(@)cos(@)/r},
3a-23a-1 = (1 = 2sin’(@))/r2,
3a-236-2 = —28in(@)cos(p)/r?,
3a~235-1 = (2sin?(@) — D)/r2,
—2sin(¢) cos(p)/r?,
3a-136-2 = (28in%(@) — 1)/r2,
3a-136-1 = 2sin(@)cos(@)/r,
a3a = COS(P)(r2, sin(e))
a3 = (ap = Ty COS(@N/(r2, 1, sin(@))
a3 — 7 l/(rab The Sln((P))
3b-236-2 = 28in(@)cos(p)/rZ,
3-235-1 = (5, (1 = 2sin¥(g)) — rap(rky k)
1b-23c-1 = 1,
Bo136-1 = —28in(p)cos(p)/r?,

— 12
b-13c-2 = T,

o

Q

u

~~
=

L

RECHCHCHC OO

3a~13a-1

N m M
1

1l

3

™ Ny T T

3 (rbc — Tap COS(@))/(rab rl%c Sln((P))
3¢~23¢~1_ — 1/'“130
3c3e = COS(@)/(rZ, sin(@))

MM T T M T T

v, <0
v, =0
v, =0

v, <0

v, =0

v, <0
V320
vy <0
v320

w3 = Ty + 1y cOS(Q) = 21, 1, W(r2, 1, sin())
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Torsion angle
Hr,r,r.,r) =sgn((r, —r,) {(r.—n)X({r,~- 1))

arccos(((r, — r) x (r, = r, ) ((r. = ry) X (ry— 1))
(7 T2, 7pq SIN(Q) SiN(H)))

o, r,r) =arccos((r,—r) (r,—r)lr,rd, 0<p<n=x
&(ry,r,,ry) =arccos((r, — r) (ry—r)r,.r,)), 0<dé<m
u, =y —yb v, =x—xb
sin(e) = —sin(arctan(u,/v,)) v, <0
sin(fa) = -1 u, <0, v, =0
sin(a) =0 u, =0, v, =0
sin(a) =1 u, >0, v, =0
sin(e) = sin(arctan(u,/v,)) v, >0
cos(@) = cos(arctan(u,/v,)) v, <0
cos(er) =0 u, =0, v, =0
cos{o) = 1 u, =0, v, =0
cos(a) = —cos(arctan(u,/v,)) v, >0
u, = 2¢ = zb, v, = cos(0) (x¢ — xb) — sin(@) (y° - y®)
sin() = sin(arctan(u,/v,)) v, <0
sin(f) =1 u, <0, v, =0
sin(B) = -1 u, >0, v, =0
cos(f) = cos(arctan(u,/v,)) v, <0
cos(f) =0 v, =0

Uy = cos(PB) (z¢ - ) — sin(PB) (cos(@) (x* — x*) — sin(a) (y? - y*))
vy = sin(@) (x4 - x*) + cos(a) (y¢ — y*)

sin(y) = sin(arctan(u,/v,)) v, <0
sin(y) = —sin(arctan(u,/v,)) vy 20
cos(y) = —cos(arctan(u;/v,)) vy <0
cos(y) = cos(arctan(u,/vs)) v, 20
E,,_, = —=sin(9/(r,, sin(¢))

Es, = cos(D)/(r,, sin(@))

Ey_ = (ry, = 1y, cos(@) sSin(h/(r,, r,. sin(@))

E;, = ((r,, cos(@) — r, ) cos(B)/(r,, sin(@)) + (r,. — 1y, cos(8)/(r,, sin(&))/r,.
E; _ = cos(@) sin(3)/(r,. sin(¢))

E,, = (cos(8)/sin(d) — cos(@) cos(¥)/sin(@))/r,,
E,, = —1/(r,, sin(6))

Fay_g3p -1 = SIN()(r,, 1y, sin(g))

Fay_5ap = —COS()(r,, 1y sin(p))

Fy_p3..1 = —sin(@)/(ry, r,. sin(@))

Fa, 54, = cOS(B)/(r,, r,. sin(@))
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= 2sin(?) cos()/(r2, sin?(@))

= (2sin¥(9) - D/(r%, sin%(p))

= 2(r,, cos(@) — r,.) sin(¥) cos(H/(r2, r, . sin*(@))

(r,p €0s(@) — r,) 2sinX(B) — 1)/(r2, r,. sin®(p))

= —2c0s() sin() cos(H/(r,, r,. sin¥(¢))

cos() (1 — 2sin(VB)/(r,, r,, sin¥(9))

~2sin(¥) cos($)/(r2, sin?(¢))

= (r,, cos(@) — r,.) 2sin¥(§) — D/(r2, r,. sin%(@))

= 2(ry, — gy cOs()) sin(B) cos(B)/(r, r,_ sin¥(p))

= cos(@) (1 = 2sin®(¥)/(r,, r,. sin?(9))

= 2cos(¢) sin(¥) cos(B)/(r,, r,. Sin*(@))

= (r,, cos(@) — r,.) sin(M/(r,, r.sin(¢))

= ((ry, = rap €OS(@)) cos(B)/(r,, sin(@)) + (r,, cos() — The)
[(ryy Sin(6)))/rE, ’

= (rye — rap COS(Q)) sin()/(r,, r?, sin(e))

= ((ry, cos(@) — r,.) cos()/(r,, sin(@)) + (r,. — r,, c0s(d))
[(ryy Sin(&))/rE,

= ((r,, c08(@) — ry )* + r2) sin() cos()/(r2, ri, sin?(@))

= (rgC (2sin%(9) - 1)/(r§b sinz(rp)) — sin%(9) + rgd/(rgd Sin2(5)))/rgc

—cos(@) sin()/(rZ, sin(p))

(rpp (SINX(@) = 2) + 2r, cos(@)) sin(B) cos(B)/(r,, r, sinX(p))

= (sin¥(J) + (r, cos(@) — r,,) 2sinX(P) — D/(r,, sin¥(¢))
+ (r,, cos(8) — r, )/(r,, SIn())/rE,

= (ryy c0s(8) — r, M(r,, 2, sin(8))

= ((ry, cos(@) — r, )2 + r? ) sin(¥) cos(H)/(r?,, r?, . sinX(@))

= (cos(@) cos(B)/sin(@) — cos(8)/sin(8))/r?,

= (sin®(¥) + (r,. cos(®) - r,,) 2sin%(B) — D/(r,, sin¥(¢))
+ (r,, €08(8) — ry )/(r, sin2(EN)/rE,

= (r,,(2 = sin¥ (@) - 2r,, cos()) sin(B) cos(H)/(r,, r}, sin¥(¢))

= 1/(ry, 1y Sin(8))

= (r,4€0s(8) — r, )(r, rk, sin*(8))

= cos(¢) sin(3)/(rE. sin(¢))

= (cos(8)/sin(8) — cos() cos(V)/sin(p))/rE,

= (2 — sin()) sin() cos(H/(rZ, sin*(¢))

= ((2sin¥(¥) - 1)/sin2(q)) — sin¥(¥) + l/Sin2(5))/r§C

= —co8(8)/(r,, 7y SIN*(5))

(sin(@) — 2) sin(¥¥) cos(B)/(r}, sin®(@))

—=1/(r,, 1,4 8in(8))

—cos(8)/(r,, Ty SINZ(6))

1/(r2, sin¥())

i

87
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Out of plane angle 7

T(r,, r,, r.,ry = arcsin((r, — r,) ((r, = r,) X (ry — )/, Ty Ty SINCE))
- nl2 < T< 72

&(ry, r. ry =arccos((r,—r) (ry—r)(r, . r,,), 0<d<m
u, =y —yb, v, =x -zt
sin(a) = —sin(arctan(u,;/v,)) v, <0
sin(a) = -1 u; <0, v, =0
sinfa) =0 u, =0, v, =0
sin(ar) =1 u, >0, v, =0
sin(a) = sin(arctan(u,/v,)) v, >0
cos(a) = cos(arctan(u,/v,)) v, <0
cos(ar) =0 u, # 0, v, =0
cos(o) = 1 u, =0, v, =0
cos(a) = —cos(arctan(u,/v,)) v, >0
u, = z° — 2%, v, = cos(o) (x¢ — xb) — sin(a) (y° - y*)
sin(f) = sin(arctan(u,/v,)) v, <0
sin(ff) =1 u, < 0, v, =0
sin(f) = -1 u, >0,  v,=0
sin(B) = cos(arctan(i,/v,)) v, <0
cos(f) =0 v, =0
uy = cos(B) (24 — z£) — sin(B) (cos{@) (x4 - x*) — sin(a) (y* - y*))
vy = sin{a) (x? — x*) + cos(a) (y?4 - y)
sin(y) = sin(arctan(u,/v,)) vy <0
sin(y) = —sin(arctan(i;/v,)) v, 20
cos(y) = —cos(arctan(u,/v,)) v3 <0
cos(y) = cos(arctan(u,/v,)) v, 20

Q(r,, ry, r.) = arccos((r, — r,) (r. — r)/r,, r,.))
hy = sgn(((r, = r) x(r, —r)) (r.—r,) x(r,— r,)) (1 — cos?(@)/cos?(1))'/?

Ey,_y = c0s(@) sin(1)/(r,, cos(T))

Ey, 1 = —h sin(1)/r,,

Ey, = —cos(D)fr,,

Ey, o, = —cos(@) sin(T)/(r,, cos(T))

Ey 1 = hosin(n)/r,,

Ey, = cos(T)/r,, + ((r,ycos(8) — ry YA [(r,, sin(8)) — cos(@)fcos(T))/r,,
E,, = cos(p)/cos() — h cos(8)/sin(8))/r,,
Eyy = ho/(ryysin(6))

Fa,_934_,= (2c0s(@) — h2) sin(1)/(r2, cos(T))
Fay naa_1= —CO8(@)h%sin(T) (2 + 1/cos¥(T))/r?,
Fyi 52, = c0s(@) (1/cos(T) — 2cos(T))/r?,
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Fy,_23p-2= (h% = 2cosX(@)) sin(t)/(r2, cos(t))

Fi_23p-1= COS(@)h, sin(T) (2 + 1/cosz(r))/r2
Fay 53y = (Q2r,, cos(@) cos(t) + (ry, h2 — r,_cos(@))/cos(T)/r,,

+ (r,;€08(8) — r,,) cos(@) h_[(r,;$in(8) cosADN/r,, Ty
Fa, 23, = —~(h + cos(g) cos(8)/(sin(8) cos(T)) h /(r,, ry.) cOS(T))
Fay_93q = COS(@)h /(r,, T,ysin(8) cOSH(T))

Fa, 135-1= (2cos(T) — cos¥ (@) (2 + 1/cos?(1))/cos(T)) sin(1)/r2,
ss-13a = h2cos¥(T) - /2,

36-13b 2= COS(@)h_sin(T) (2 + 1/cosX(1))/r?,

30— 135 1= (€0s%(@) (2 + 1/cos?(T))cos(T) — 2cos(T)) sin(T)/r2,
a1 = ((ry (1 = 2cos¥(T)) + r,, cos(@)/cosH T h,/r,,

+ (ryy €0S(8) — r,.) cosX@)/(r,,sin(8) cos> (DN/(r,, 7yp.)
—cos(@) (h, + cos(p) cos(8)/(sin(8) cos(T)Nr , 7p.) cosz(r))

w5 W M
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3a-13c -
Fay_yag = cOS2@)(r,, ry,sin(d) cos*(1))
LEVER = —2sin(7) cos(T)/r2,
Fia.2 = cos(@) (2cos(t) — l/cos(T))/r?,
Fagap_y = hy(1 = 2cos(())/r2,
Fa = 2sin(1) cos(1)/r?,
Fiy_p3p_2= (2€08%(@) - h?) Sm(T)/(rzb cos(T))
Fay_a3p_1= —COS(@) A, sin(T) (2 + 1/cos*(1))/r2,
Fy oy = (2 + 12,) cos(@) — r,y 1y h2) cos(T) — 2r2_cos(@)cos(T))

Py + (Fap + 74, COS(Q)/COSA(T)) (ry, — 7y COS(E)) P,
[(ry 4 (SIN(EN(r,, 2.)

Fay g3 = ((rg(ry cos(8) - rbc) + 1y, 7y, €OS(@) cos(8)/cos (T)h,
(ryySiN(8)) + (ry, h% — 1,y cOS(9))COS(TNAr,y 13,

Fyy 54y = —CO8(@)h [(r, r,,sin(d) cos*(T))

Fyy_ 131 = 2cos(T) — cos2(@) (2 + 1/cos®(1))/cos(T)) sin(T)/r2,

Fo ya, = ((("Zb + r%C(ZCOSZ(T) - 1))r§d

— 1 (Fap T2 /5IN%(8) + ry_ rE,cos(9)/cosA(T)) A /(T Toa)
+ (g — 7o COS(9)/cOS*(T)) (r,,€08(8) — r,.) cos(¢)
/(sin(8) cos(TIN/r 12, 7pa)

Fyp 13 = ((r,.cos(@)/coSHT) = 1) Fog + Top(Fog = Tpe €OS(S))
/sin?(8))h ir,, + (r, cos(9)/cos¥(T) — r,,) cos(¢p) cos(d)
/(sin(8) cos(T))/(r,, rE,)

Fay_y3a = ((ry, ~ rpg €O8(8))h [(r,,sin(8)) + (r,, — 1, cos()/cos¥(T))
cos (@) /(r,,, cOS(T))/(ry, pySIN(S))

Fypa = 2(ry, - rbdcos(5)') cos(go)h /sin(8) cos(1))
~ (2r2, r2, cos(T) + r2,(r2, — (2r¢, — r},/sin(8)) cos* (o)
[cos2(T)/coS(T)/(r2, ry,)) sin(T)/(rE, r,,)

Fyyae = (hc0s(8)/sin(8) — cos(@)/cos(T)/rE,
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Fipse.y = (ry c08(8) —r,.) (hcos(8)/sin(8) — cos(p)/cos(T))
[(r}, ry,sin(8))

Fap s, = (ryy — Qry, + (r,.c0s(8) — r,,)/sinX(8))cos?(@)/cosX(T)
+ (2r,,€08(8) - r,.) cos(@) h /sin(6) cos(1))) sin(T)
[(r}, ry,c08(T))

FBb d-2 = "h«;/(rbc rdein(é)) \
Fapagy = (ry. — 1y, €08(8))h [(r,, 1}, sin¥(8))
Fapaq = ((r,, — r,4€08(8)) cos(@)/(r},sin(8) cos(T)) - h,) cos(p)

Sin(T)/(r,, r,45in(8) cos*(1))

2e_23. = (cos(@)/cos(T) — h cos(8)/sin(d))/ri,

1o 13 = (cos(@)/cos(T) — h cos(8)/sin(8)) cos(8)/(r}, (5))

e 13a = (hcos(8)/sin(8) — cos(@) /cos(T))/(r,, r,,sin(8))

e 3 = (cosX(@) (2 — 1/sin%(8))/cos*(T) — 1 — 2cos(®) h, cos(d)
/(sin(8) cos(1))) sin(T)/(r?,, cos(T))

sc3a-2 = Nl(ry rygsin(d))

se3d_1 = hecos(8)(r,, r,,sin%(5))

3¢ 3d = cos(@) (h, + cos(@) cos(@) /(sin(d) cos(T))) sin(T)
/(Fye Tpy SIN(S) cOSH(T))

Fig_13a = —h/(r};sin®(8))

Flyay = —cosX () sin(T)/(r},sin*(8) cos*(T))

N N TN WY
|
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